Considerations in Evaluation of Potential Exposures to Emissions from Unconventional Oil and Gas Exploration

Lindsey Jones, MS

Toxicology Division

Texas Commission on Environmental Quality

Number of Producing Gas and Gas Condensate Wells, 1990-2016

Production in the Barnett Shale Area, 2000-2017

Research Question

- Are ambient air concentrations of pollutants at levels that could negatively impact public health or the environment in areas of high oil and natural gas activity?
 - Not included in this question
 - Traffic, noise, light (local jurisdictions)
 - Indoor air quality or personal exposure
 - Water (considered separately)
 - Indirect impacts

Potential Pollutants

- Volatile Organic Compounds (VOCs)
 - Modified TO-15 suite of 84 VOCs (grab, 30-minute, or 24-hour discrete canister samples)
 - Suite of 46 VOCs (1-hour continuous sampling using autoGCs)
- Carbonyls (aldehydes)
 - TO-11 suite of 18 carbonyls (1-hour or 24-hour discrete cartridge samples)

Exposure Considerations

- Constituents and concentrations
- Distance to receptor
 - Emission source is sometimes very close to residences
- Length of exposure

Typical Timelines

Site selection, pad site preparation

4-6 weeks

Drilling
2-4 weeks

Fracturing
3-5 days

ProductionDecades

Investigative Strategy

- Qualitative Sampling and Surveys
 - Pro: Highly mobile, provides data closer to both sources and residents
 - Con: Unspeciated data not useful for health effect evaluations
- Quantitative Sampling
 - Pro: Provides insight into pollutant concentrations and variability over time
 - Con: Not easily movable, expensive
- Special Emission Inventory
 - Pro: Provides insight into likely sources
 - Con: Data collection takes time and relies on calculations

Qualitative Data Collection

- Handheld instruments
 - Over 4000 surveys on the ground
 - Almost all used a survey VOC monitor
 - Over 90 investigations used a handheld H₂S monitor
- Infrared Imaging
 - Over 3000 investigations used a handheld IR camera
 - Thousands of images collected during flyovers in 2005 and 2007

Quantitative Data Collection

- Field Sampling
 - Over 1700 individual canister samples
 - 52 carbonyl samples
 - Collected distance and source information

Quantitative Data Collection

- Mobile Monitoring
 - Eight multi-day trips in 2009 and 2010

Discrete and real-time sampling for VOCs, NOx, sulfur

compounds, carbonyls

Quantitative Data Collection

- Fixed-site monitors
 - 2009 6 monitoring sites
 - 2 autoGCs
 - 6 canister samplers (2 collocated with autoGCs)
 - 2 carbonyl samplers
 - 2017 26 monitoring sites
 - 15 autoGCs
 - 13 canister samplers (2 collocated with autoGCs)
 - 2 carbonyl samplers

Results to Date

- Nearly all of the issues documented arose from human or mechanical failures.
- These items were quickly remedied and could have been avoided through increased diligence on the part of the operator.
- Corrective actions amounted to little more than replacing worn gaskets, closing open hatches, and repairing stuck valves.

Changes in Annual Average BTEX Concentrations at Stationary Canister Sites, 2006-2016

Single Canisters

- Over 1700 samples collected since 2009
- <4% of collected canisters had exceedances of shortterm health or odor comparison values
- Repeat investigations showed concentrations below shortterm comparison values

Investigation Canisters with an Exceedance of a Health or Odor Value, 2009-2017

Investigation Canisters with an Exceedance of a Health or Odor Value, 2009-2017

Investigation Canisters with an Exceedance of a Health or Odor Value, 2009-2017

Sampling Distances

Location of Discrete Cansiter Samples in Relation to Potential Sources in the Barnett Shale, 2009-2017

Location of Canister Samples with a Short-Term AMCV Exceedance

Carbonyl Concentrations

- None of the 52 sample concentrations was above a level of health concern
- Relatively consistent concentration independent of sampling location
- Formaldehyde, acetaldehyde, and acetone were the most abundant carbonyls detected
- Formaldehyde concentrations were typical for populated areas

Barnett Shale Special Emissions Inventory-VOCs, 2009

Barnett Shale Special Emissions Inventory-VOCs, 2009

Conclusions

- Monitored ambient VOC, carbonyl, and H₂S
 concentrations remain below a level of health concern
- Using a multi-pronged approach to evaluating potential for exposure leads to a more complete picture of potential risk and helps to focus investigative efforts

Moving Forward

- Ensure transparency of our efforts through abundant and timely communication with all interested parties
- Evaluate data from the existing ambient air quality monitoring network and samples collected during investigations
- Maintain a frequent, routine investigative presence while also providing timely complaint response
- Adjust as necessary

Extras

Wells and Ambient Air Quality Monitors

